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Abstract

A highly advanced enantiomerically pure C(1)±C(18) precursor of the larger fragment of the macro-
diolide pamamycin-607 has been synthesized. The stereotriad C(7)±C(9) between the two heterocyclic rings
of the target was generated using a diastereoselective hydroboration controlled by minimization of allylic
1,3-strain. # 2000 Elsevier Science Ltd. All rights reserved.
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The pamamycins are a group of 16-membered macrodiolides that have been isolated from
Streptomyces alboniger and Streptomyces aurantiacus. These compounds display interesting
autoregulatory, antibiotic, and anionophoric activities.1 Pamamycin-607 (1)2,3 is especially intriguing
for its potent activity against gram-positive bacteria including multiple antibiotic-resistant strains
of Mycobacterium tuberculosis1 as well as against phytopathogenic fungi.1,2b

Whereas several groups have disclosed synthetic routes to di�erent moieties of pamamycin-607
(1),4,5 a total synthesis of 1 has not been published yet. Our retrosynthetic analysis of 1 (Scheme 1)
relies on an iterative application of a methodology6 developed for the synthesis of actic acids and
analogs. According to this plan, we have recently communicated a short and highly enantio-
selective access to the methyl ester 5 as an intermediate for the larger fragment 2 and the methyl
ester of the complete smaller fragment 3 from furan and 2-bromo-4-methylfuran, respectively.5

While the C(1)±C(8) portion of 2 should be available from hydroxyalkylfuran 4 using a reaction
sequence similar to the one that was successful for the synthesis of 3 and 5, the selective generation
of the stereotriad C(7)±C(9) (pamamycin numbering) between the two heterocyclic rings of 4
presents an extra challenge.
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Here we report an e�cient solution to this problem as well as the smooth intramolecular Diels±
Alder reaction of the vinylsulfonate derived from the crucial hydroxyalkylfuran 4 to give a highly
advanced C(1)±C(18) precursor of the larger fragment 2.
As illustrated in Scheme 2, silylation of the hydroxyl group of 5 with tert-butyldimethyl-

chlorosilane followed by reduction of the ester function in 6 delivered the mono-protected diol 7
in excellent yield. Conversion7 of 7 to the iodide 8 followed by halogen±lithium exchange8 and
subsequent addition of 2-acetylfuran to the resultant organolithium intermediate yielded two
diastereomeric tertiary alcohols (dr=1:1). Upon stirring a chloroform solution of this mixture
with catalytic amounts of concentrated aqueous hydrogen chloride for a few minutes at room
temperature, the (E) ole®n 9 was formed with complete diastereoselectivity.
We envisioned to exploit the preferred conformation of this trisubstituted ole®n dictated by

minimization of allylic 1,3-strain9,10 in order to e�ect a diastereoselective hydroboration/oxidation
to the key hydroxyalkylfuran 4. A strong NOE between the vinylic methyl group and the allylic
hydrogen atom supported the assumption that 9 adopts the depicted conformation. Thus, a borane
should preferentially approach the ole®n from the top face in order to avoid non-bonding interac-
tions with the larger tetrahydrofuranyl substituent RL on the stereogenic allylic carbon. Indeed,
hydroboration of 9 followed by standard oxidative workup delivered largely one stereo-
isomer that was isolated in good yield. Since the 1H, 1H coupling pattern within the stereotriad C(7)±
C(9) (pamamycin numbering; 4: H-8, � 4.00, dd, J8,9=1.9 Hz, J8,7=8.8 Hz) ®tted very well the cor-
responding couplings observed for pamamycin-607 (H-8, � 4.99, dd, J8,9=0.9 Hz, J8,7=10.8 Hz) and
the methyl ester of the larger fragment 2 (H-8, � 3.76, dd, J8,9=1.8 Hz, J8,7=9.7 Hz),2e we tentatively

Scheme 1.
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assigned the desired con®guration to this major product 4. Thus, we were ready to enter the second
iterative cycle of our sultone route to actic acids and analogs.5,6

Treatment of hydroxyalkylfuran 4 with vinylsulfonyl chloride smoothly produced a single sultone
10 via tandem esteri®cation/cycloaddition5,6 in high yield (Scheme 3). Whereas the enantiomerically
pure compound 10 (���25D=^9.2 (c 0.95, CH2Cl2)) did not crystallize, rac-10 prepared analogously
from rac-1,2-epoxypentane5 gave suitable crystals that allowed elucidation of its relative con®g-
uration by X-ray di�raction.

Scheme 2.

Scheme 3.
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Next to proving the formation of an exo sultone with equatorial orientation of both alkyl
substituents on a chair d-sultone, this analysis (Fig. 1)11,12 also unambiguously con®rmed the
anticipated stereochemical course of the preceding hydroboration/oxidation step. In sultone 10,
all carbon atoms of the backbone of the larger fragment 2 have been assembled (see pamamycin
numbering of 10) except for the C(2) methyl group, which is to be introduced during the follow-
ing tandem elimination/alkoxide-directed 1,6-addition.5,6 Since the requisite N,N-dimethylamino
group will be attached with inversion of con®guration, seven of the nine stereogenic centers
present in 2 are already set up correctly. Further elaboration of sultone 10 to 2 according to our
general access to actic acids and analogs is currently being investigated and will be reported in
due course.
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